

Airflow Control, Air Barriers, and Energy

Dr John Straube, P.Eng.
University of Waterloo
Building Science Corporation

Introduction

- Energy and R-value
- Airflow Control vs Air Barriers
- Airflow and Energy
- Metrics and Measurement

Energy is important

- Slowing heat loss/gain through enclosures is important part of future buildings
- "High R" walls are required, new/retrofit
- But R-value is not a good measure for good enclosures

www.BuildingScience.com

R-value: ASTM C518

- FTC "Rule" R-value reported at mean temperature of 75 F
- Typical hot plate: 95F, cold plate 55F

FIG. 3 Apparatus with Two Heat Flux Transducers and One Specimen

www.BuildingScience.com

bsc

Factors influence Heat Flow

- Temperature
- Thermal bridging
- Insulation installation defects
- Airflow

Energy and Through-flow

- Easy to calculate energy from through flow
- Hard to quantify other terms

 $g = dm/d\theta c_o \cdot \Delta T$ [1] where θ represents time and $dm/d\theta$ is the mass flow rate of the fluid (kg/s) per unit time, c_o is heat capacity of the fluid (J / (kg·K)), and and ΔT is the temperature difference (K).

www.BuildingScience.com

bsc

Need for a new metric

• Thermal bridging 25-75%

• Temperature -15 to +15%

Airflow

Through wallWithin wallWindwashing5-50%+0-30%+0-50%

 If we are serious about energy, we need to account for these in design

Example Results

Summary

- R-value measures insulation
 - We need assembly values, as built
- Air barriers are good start
 - But controlling airflow is what is needed
- What you cant measure, you cant control
 - We need better metrics, then standards to follow
 - Material airtightness is not very useful

