

Aim High: High-performance buildings of the future

John Straube Ph.D. P.Eng.

www.BuildingScience.com

Changes ...

- · Expectations are rising
 - Lower operating costs
 - less energy consumption (same cost?)
 - more comfort
 - Better IAQ
- In short ...

better buildings at less total cost

Measuring Performance • Performance metrics - Beauty - Awards - On-time - Utility - On budget - Green, LEED - Healthy - Productive - Operating costs - Operational energy use

Enclosures in Context

- Enclosures reduce space heating/cooling
 - and help with lighting, ventilation
- We still need **energy** for other things
 - Lights, appliances, computers, elevators, etc
- But
 - Bad enclosures ruin good HVAC
 - Bad HVAC can ruin good enclosures

www.BuildingScience.com

Unintended consequences

- Better insulation
 - Makes inside/outside surfaces colder
- Often better airtightness
- White roofs / green roofs
- Solar control windows
- More efficient lighting

Complexity

- Modern buildings and systems are complex
 - Good design must manage complexity
 - Allows for focus on the big things
 - e.g., program, massing, quality
- Enclosure and HVAC can be made simpler and more robust by early design-stage decisions

www.BuildingScience.com

New Solutions

- Step change in performance required
- Different approach to design& construction
 - Target, predict, measure performance
 - Quality assurance/control in drawings, on site
- Different assemblies and systems
 - More robust of operational/construction errors
 - Less complex, easier to manage

Prescription of High Performance

- Good skin
 - Rain, air, heat, vapor control
 - Simple to understand/analyze assemblies
- Good HVAC
 - Control temperature, RH, Fresh air seperately
 - Simple to understand/analyze systems
- Good design
 - Daylight, view, program, enjoyment
 - Assume future changes will occur

Top Ten List

Commercial and institutional mid-size buildings, Zone 5-7 climates

- Limit window-to-wall ratio (WWR) to the range of 20-40%, 50% with ultra-performance windows
- Increase window performance (lowest U-value affordable in cold climates, including frame effects)
- Increase wall/roof insulation (esp. by controlling thermal bridging) and airtighten
- · Separate ventilation air supply from heating and cooling.
- Use occupancy and daylighting controls for lights and equipment
- · Reduce equipment/plug & lighting power densities
- Don't over ventilate, use heat recovery & demand controlled ventilation
- Improve boiler and chiller efficiency & recover waste heat (eg IT rooms!)
- Use variable speed controls for all large pumps and fans and implement low temperature hydronic heating and cooling where appropriate.
- Use a simple and compact building form, oriented to the sun, with a depth that allows daylight harvesting.
 www.buildingScience.com

This seminar

- Enclosure
- HVAC (after lunch)

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science

Enclosures No. 27 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people
- Distribution a building function

Building Science

Functional Layers

Basic Enclosure Functions Support Resist & transfer physical forces from inside and out Lateral (wind, earthquake) Gravity (snow, dead, use) Rheological (shrink, swell) Impact, wear, abrasion Control Control Interior and exterior surfaces for people

Basic Enclosure Functions

- Support
 - Resist & transfer physical forces from inside and out
- Control
 - Control mass and energy flows
 - Rain (and soil moisture)
 - Drainage plane, capillary break, etc.
 - Air
 - Continuous air barrier
 - Heat
 - Continuous layer of insulation
 - Vapor
 - Balance of wetting/drying
- Finish
 - Interior and exterior surfaces for people

Building Science.com

Enclosures No. 31 /

Other Control . . . Support Control Fire **Functional Layers** Penetration Propagation Sound Penetration Reflection CONTROL - Light Diffuse/glare View Finish Building Science.com Enclosures No. 32 /

Support Resist & transfer physical forces from inside and out Control Control mass and energy flows Finish Interior & exterior surfaces for people Color, speculance Pattern, texture

What is a high performance enclosure?

- One which provides high levels of control
- Poor continuity limits performance
- Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- Thus: continuity + high levels of control

www.BuildingScience.com

Continuity is key!

- Must ensure no rain leaks, no holes
- Airflow control should be as continuous as practical
- Thermal control

Energy

- We live with penetrations
- Minimize steel and concrete to small local points
- Vapor control
 - Not that important to ensure continuity

www.BuildingScience.com

1. Rain Control layer

- Three available strategies for walls, roofs, basements, windows, etc
 - Mass or storage
 - Perfect barrier
 - Face-sealed, concealed barrier, waterproofing
 - Drained
 - Rainscreen, pressure equalization, ventilation

www.BuildingScience.com

Drained

- · Drained systems preferred
- Account for joints and penetrations as well as installation defects and material failure

Building Science.com

Air-Water Control Layers

Sloped and complex surfaces demand very high performance

2. Airflow control

- · Airtightness critical for all climates
 - Control condensation and energy waste critical in cold climates
- Airflow Control Layer
 - Practically, an air barrier system
- Cant be TOO tight
 - But must provide ventilation

76/175

Airtightness

- Materials not important, system is
- GSA and Army Corp requiring testing to tightness targets now
 - 0.40 and 0.25 cfm/sf@75 Pa respectively
- IECC/IRC likely to require soon
 - Measured at 50 Pa in houses

Building Science.com

77

3. Thermal control

- Resists heat loss/gain = energy savings
 - Large temperature differences: cold and hot climates, roofs (hot)
 - Less important in warm-humid and mixed climates
- Warms surfaces = durability
 - Avoids condensation in hot and cold weather
 - = a durability and health strategy
 - Keep structure warm and dry and stable

11-04-08

Insulation

- . How much? Use much more than normal practise
- · Comfort & condensation resistance:
 - True R5-10 is usually enough, but
- · For energy / environment:
 - "As much as practical", eg R10-R20
- · Practical constraints likely the limit
 - How much space available in studs?
 - Fastening, windows: exterior sheathing of 1.5"/4"
- Increased insulation should reduce HVAC capital as well as operating!

It's More Than Insulation!

- Thermal bridges provide shortcut for heat through insulation
- Heat passes through the structural members
- · Common offenders
 - Floor and balcony slabs
 - Shear walls
 - Window frames
 - Steel studs

Thermal Bridge Examples

- Aluminum framed
- Balconies, Exposed slab edges

Thermal Continuity

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few
- Major offenders / weak spots
 - Penetrating slabs (<R1)</p>
 - Steel studs (<R1)
 - Windows (R2-R3)
- Both Area and Low R matter
 - to overall energy use, and local problems of comfort and condensation

www.BuildingScience.con

