

Aim High: Good Mechanicals

HVAC Objectives

- Safety
 - Combustion, explosion, scalding
- Health
- Comfort
 - Temperature, humidity, air speed, noise, light
- Reliability
 - Maintainable, long term performance,
- Efficiency
 - Meet the needs imposed by occupants and enclosure with a minimum of additional energy

1-07

Common Problems

- Poor comfort
 - Poor control of temperature and/or humidity,
 - Noise, drafts from high velocity air (at 55 or 95 F)
- Health
 - Air based systems act as distribution for outdoor pollutants, mold grown in coils/ducts
 - Chilled water pipes collect condensation leading to mold
 - Insufficient ventilation/mixing common issue
- Energy
 - Systems are often very inefficient
- Maintainability / Controllability
 - Systems are complex, difficult to trouble shoot, maintain etc

11-04-07 4

Functions

Five Critical functions are needed

- Ventilation
 - "fresh air"
 - Dilute / flush pollutants
- Heating
- Cooling
- Humidity Control
- Air filtration / pollutant Removal
 - Remove particles from inside and outside air
 - Remove pollutants in special systems

11-04-07

What do you need to deliver?

Туре	Temperature	Humidity	Pressure	Examples
Ia	•			Heated house, warehouse
16	•	0		Heating and normal A/C
Îĉ	•		0	Heating + exhaust fans
Id	•	0	0	Heating+ A/C + exhaust fan
Πa	•	•		Museum, fruit storage
ПЬ	•	•	0	Pressurized + controlled
ш	•	•	•	Special labs, chip fabrication
IV	•	1.00	•	Dust controlled manufacturing
V		•	•	
VI			•	

Note: Directly controlled O - Incidental Implicit

All require metered deliver of fresh air, and some exhaust of polluted air

Indoor Air Quality

- Most HVAC re-circulates air
 - This takes pollutants from one space and moves to another
- HVAC can suck in pollutants from outdoors
- Filters and Interior Duct Insulation collect dirt
- If moisture (condensate) contacts, mold can grow
- Air flow distributes the problem smells and spores

11-04-07

Common Air-based Sysems

- CAV systems
 - high energy consumers but provide outdoor air
- VAV
 - decent energy performance, but rarely supply desired ventilation (fresh) air rates
- DOAS: Dedicated Outdoor Air Systems
 - provide Ventilation (+ almost always dehumidification) only
 - separate terminal equipment does heating and cooling
 - Highest performance, easy to design & fix

11-04-07 8

Variations on VAV

- · Spaces with low cooling load often under-ventilated
- Minimum flow setting at box can be imposed by clock or CO₂ and "reset" by temperature
- Reheat at box often needed, can be significant energy
- Outdoor air % can vary with return air CO₂ or clock
- Supply fan can be operated to provide constant static pressure (VFD)
- Flow can be measured at each box, with reheat, connected to central control to guarantee ventilation air (complex, \$, works)

11-04-07 11

DOAS

- Most reliable means of delivering ventilation air to people without over ventilating
- Excellent humidity control, no extra reheat
- No cross-contaminated air from different zones
- Small ducts (ventilation only, no cooling)
- Works well with hybrid ventilation
- Disadvantage: economizer flow is limited, so free air cooling capacity is limited by 2-3X

Energy recovery ventilation

- Reduces equipment peak capacity (saves capital \$)
- Reduces load on heating/cooling/ dehumidification (saves energy/operating \$)
- Usually makes sense for any large mechanical ventilation flow

Underfloor Air Distribution

- A "green" technology. Why?
- Higher temperature air delivery (55F vs 65)
 - High T required for ankle comfort,
 - allows higher chilled water temp (saves energy)
- Large airflow volumes required for cooling
 - More airflow= more fan energy, but . . .
 - Allows economizer at higher outdoor T
 - Requires large "ducts" to reduce fan energy

Building Science 2008

Green Buildings No. 16/51

Cooling dominates, not ventilation • Perimeter zones **The Strattled Zone Strat

Other "Issues"

- Dirt Collection & IAQ
 - •During construction
 - Operation
- Furniture
 - •Need to coordinate heavy furniture with filters, access

Building Science 2008

Green Buildings No. 24/51