

Outline


- What are the trends
- What are possible emerging technologies

Building Science.com

Predictions

- Are usually incorrect
- What follows are informed guesses ... and hopes of a select number of changes

Building Science.com

Future Transportation

- More train and mass transit
 - Already happening
- · Plug-in hybrid
 - 100 mpg average
- Light weight vehicles
- · Diesel and diesel hybrid
- Fuel cells?:
 - where is the Hydrogen

Building Science.com

Buildings, Energy, Environment No. 5/84

Competition Cars vs Buildings

- Chevy Volt (2010)
- Prius Plug-in (2010)
- European diesels are coming....
 - 2008 and on . . .
- Electrification of buildings will increase, but will compete with transport

Building Science.com

Buildings, Energy, Environment No. 6/84

Efficient Enclosures & HVAC

- Airtight buildings require ventilation systems
 - Don't over ventilate. Quality≠Quantity
- Better windows, insulation and lighting
 - = Low heat gain
 - = dehumidification, less sensible cooling
- Thermal mass matters more
- Different HVAC systems can now be applied
 - Radiant cooling

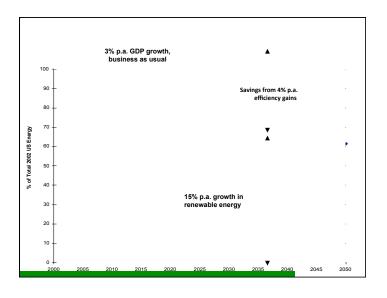
Building Science.com

Buildings, Energy, Environment No. 8/84

Efficiency, Renewables, Retrofits

- Reducing energy wasted (efficiency) allows renewables to be economically and environmentally practical
 - Need to increase Energy Return on Investment
- Huge existing stock of buildings, means:
 - Energy-efficient retrofits must be part of any solution
- Both renewables and retrofit are needed!

Building Science.com

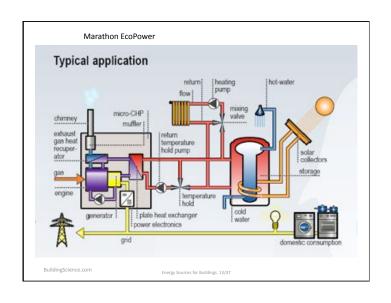

Buildings, Energy, Environment No. 9/84

Renewables

- PV price is dropping, more silicon better prod.
- Installed cost likely under \$5/W before 2012
- Large Wind installations increasing
 - No serious contenders for micro wind turbines on the horizon
- Sophisticated Biomass (wood pellets, etc) growing

Building Science.com

11



Combined Heat Power-small

- Heat and power (roughly 3:1) on demand, 90% eff
- Capital cost (elec) Marathon EcoPower (\$20K/4.7 kW)
 - \$3 000- 20 000/kW
- Elec cost (if heat is free)
 - \$0.10-0.25 kWh
- Difficult to match home/office needs
- · Can provide base load or peaking
- Sterling cycle, microturbines, diesels, fuelcell
 - maintenance

BuildingScience.com

ergy Sources for Buildings. 12/4

Mechanical systems

- Will get smaller and more efficient (right size)
- Tankless craze will mature to condensing boilers with microstorage
- Solar thermal costs are not dropping and storage costs \$: PV soon may usurp

Building Science.com

4.4

Low Temperature Heat Pumps

- New generation of air-to-air and air-to-water heat pumps
- COP over season of 2 to 3
- Much lower cost, easier installation than GSHP

Integrated Heat Pumps

- Heat pumps that make hotwater as well as space heating
- Improve on electrical COP=1

Building Science.com

CO2 Refrigerant

- New generation of compressors available to handle R744
- Higher COP
- less environmental impact
- Lower temperature operation (-40)

Building Science.com

17

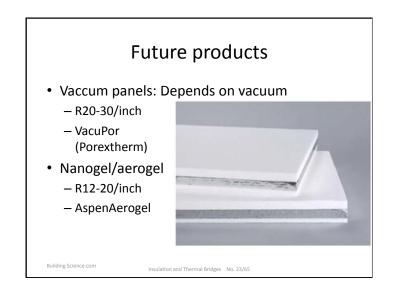
System flow of the Heat Pump Hot Water Supplier System flow of the Heat Pump Hot Wate

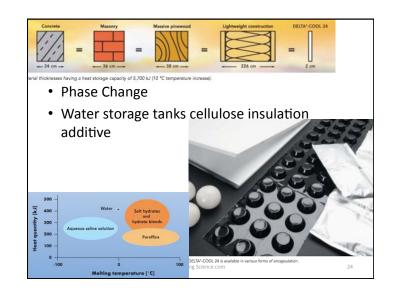
Enclosures

- We will start to do some of the stuff we know how to do on a wider scale
 - Insulating sheathing
 - Airtightness
 - Insulate basements
- More bio-based and recycled content

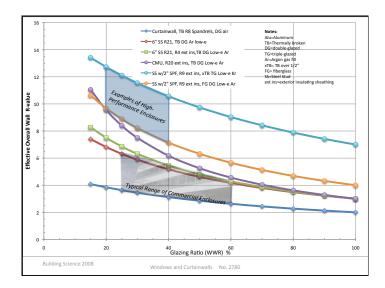
Building Science.com

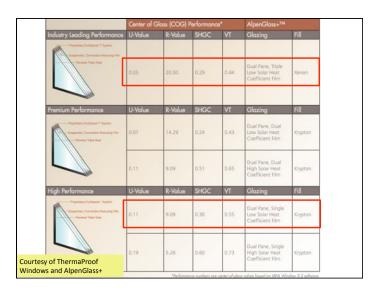
19

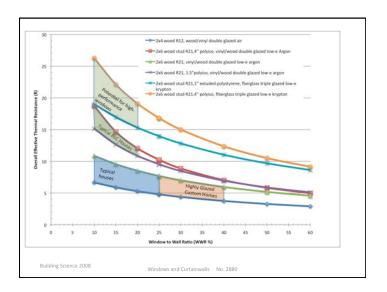

Enclosures


- Expansion of stressed skin panels (metal skins, fiber cement and OSB) and ICF
- More spray insulation
 - Fiberglass
 - Rockwool
 - Foams
- Wider range of spray foam:
 - − ½ pcf, 2 pcf, and 0.8, 1.25, etc.

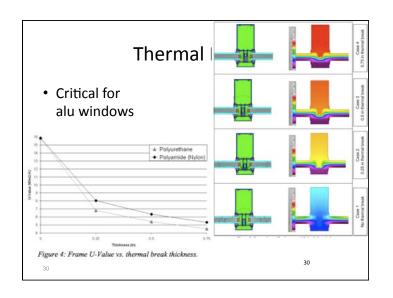
Building Science.com

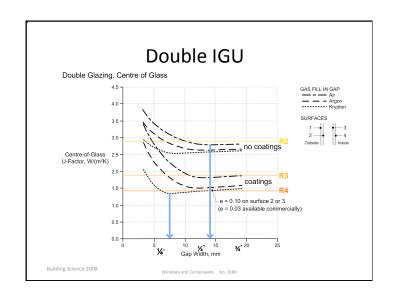


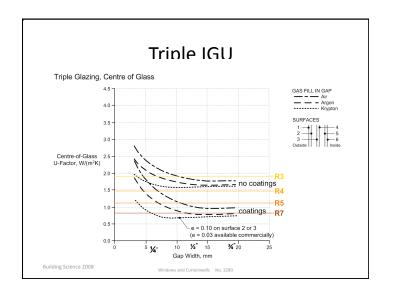



Windows

- R-value set to drop to ½ of current
- Triple glazing, heat mirror glazing get better
- Better frames and thermal breaks
- Price becoming more competitive
- Exterior shading becoming more important control solar heat gain


Building Science.com





Windows

- Vacuum panels
- Edge effects

Summary

- Few of these innovation are needed to solve climate crisis
- PV, heat pumps, plug-in hybrids are most likely to make it much easier to achieve clean, low resource future

Building Science.com