

Mechanical Basics

Outline

- functions of HVAC systems
- Role of temperature in system choice and efficiency
- Some common piece of equipment
- · Generic systems

HVAC Objectives

- Health
- Safety
- Comfort
 - Temperature, humidity, air speed, noise, light
- Reliability
 - Long term performance, maintainable
- Efficiency
 - Meet the needs imposed by occupants and enclosure with a minimum of additional energy

11/12/09

Common Problems

- Poor comfort
 - Poor control of temperature and humidity,
 - Noise, drafts from high velocity air
- Health
 - Air based systems act as distribution for outdoor pollutants, mold grown in coils/ducts
 - Chilled water pipes collect condensation leading to mold
 - Insufficient ventilation/mixing common issue
- Energy
 - Systems are often very inefficient
- Maintainability / Controllability
 - Systems are complex, difficult to trouble shoot, maintain etc

11/12/09

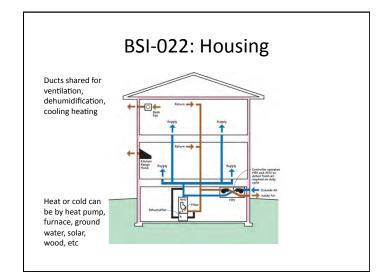
Functions

- · Five Critical functions are needed
- Ventilation
 - "fresh air"
 - Dilute / flush pollutants
- Heating
- Cooling
- Humidity Control
- Air filtration / pollutant Removal
 - Remove particles from inside and outside air
 - Remove pollutants in special systems

11/12/09

5

Thermodynamics 101


- Heat (Thermal energy) is measured by temperature
- Can produce heat by converting chemical, physical, electrical, radiation, or nuclear energy sources
 - Some heat can be produced at nearly 100%
- Cannot destroy heat, only move it around
 - Heat pumps move thermal energy from
- Cold is a relative term = "less heat"


11/12/09

Physical Systems & Components

- Components
 - Heat production (including cooling)
 - Heat rejection / collection
 - Heat/Cold Distribution
 - Ventilation air supply/exhaust
 - Ventilation Air Distribution Air Filtration
 - Humidification/ Dehumidification
- Confusion arises when functions are combined across different components in different systems

11/12/09

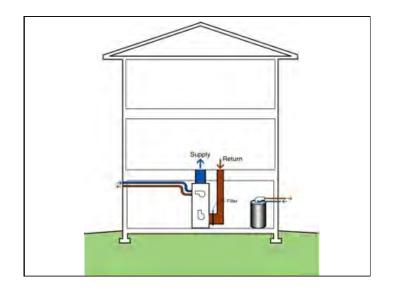
Heating & Cooling 101

- We produce heat to increase temperature
- We remove heat to lower temperature
- Heat/cool Equipment has three stages
 - 1. Heat production
 - 2. Distribution (optional)
 - 3. Heat rejection
- Can mix and match most of different technologies for each stage

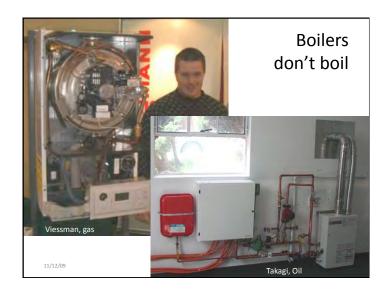
11/12/09

Heat Production

- Boilers : heat to water
 - Old types heated water to steam and distributed
 - Modern heat water to 35C (95F) to 85C (190 F) and pump water using small electric pumps
- Furnace: heat to air
 - Air is heated to min 40 C (110 F) and usually 60+ (150)

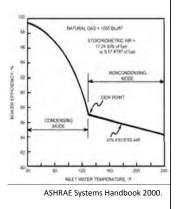

11

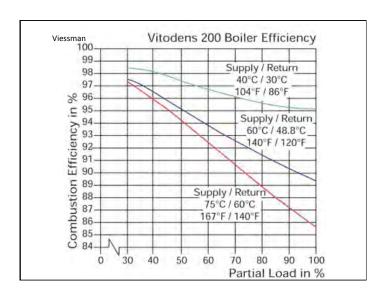
- Electric fan is used to move air
- · Both heat exchanger between flame to fluid
- Fuel sources
 - Nat gas, oil, propane, wood, electric, etc.


11/12/09

Heating

- · Need hot air and hot water
- Can combine one source for two uses
 - Makes sense for small efficient buildings
- This can be a combo fancoil or radiators or radiant slabs
- DHW should be heated to 130 F to kill Legionnaires bacteria




Boiler Combustion Efficiency

- Most combustion is >99.9% efficient
- Equipment varies on ability to extract useful heat from combustion via HX
- Heat exchanger size is important
- Temperature of entering fluid is also critical
 - Condensing furnace (72 F / 22 C)
 - Condensing boiler >90% (<110 F / 45 C)</p>
 - Normal boiler <85% (>130 F/ 55 C)

Condensation % Efficiency

- Depends on return temperature
- Terminal equipment that can return low temps aid efficiency
- Target 95-110 F (35-43 C)

Consequence

- Furnaces: return air temperatures = room temperature (70 F/21C)
 - Hence, condensing, 95%+ efficiency practical
- Boilers: depends on system design/operation

- Radiant panels: 90-120 F / 32-48 C

Fan Coils: 100-180 F /40-80 C • Will not condense if T > 135F/55C

- Baseboards: 120-180F+

Building Science 2008

Heat Pumps

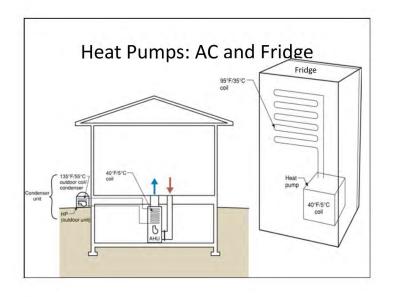
- Neither create or destroy heat, but move it
- Require input energy just like any other pump
- Need
 - Source of thermal energy
 - **Sink** of thermal energy
- Sources (inside=cooling, outside=heating)
 - Air ("Air source")
 - Ground ("ground source")
 - Soil, Groundwater, or Surface water (eg lake)
 - Wasteheat in building via exhaust air or drain water

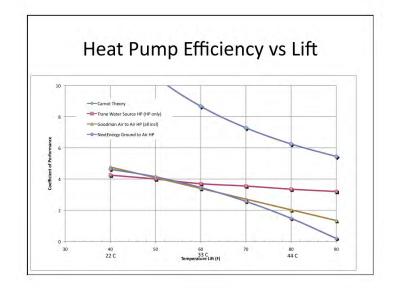
11/12/09

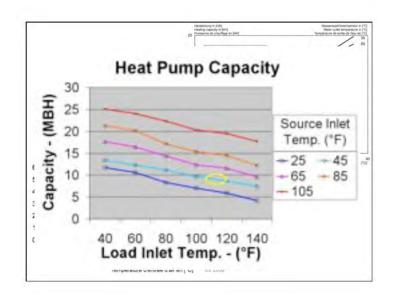
Heat Pumps

- Use compressors, and refrigerant ("Freon")
- All use internal heat exchangers to transfer hot or cold refrigerant to water or air

95°F/35°C


- Terminology
 - "Air to air heat pump" = "air-source"
 - "Water-to-water heat pump"


– "air conditioning"


- Water to air
- Ground source

11/12/09

- "Geothermal" 3 kW Tank of water

Cooling Most cooling equipment is a heat pump – uses the interior as a source (collection) and – Outside as the sink (rejection) Other mechanical cooling systems (all described later) – Evaporative cooling – "Free cooling" • Use a source of cold air or water to absorb (collect) heat and remove to the exterior • Air-side economizer • Water-side economizer

Heat Pump and Reject/Collect in same box

• Compressor, and DX coils in one enclosure

Terminal Units

- Terminal= end of line
- One end to dump heat in heating systems
- Two ends of heat pump systems

Differ in terms of amount of heat transferred by convection or radiation

• A water to air or water to water heat pump with with collection / rejection in ground

Low Temperature Supply

- Need larger fan coils, radiant panels, base boards etc
- Most manuf rate equipment at high (eg 180 F / 80C) temperatures
- Size for units at 110 F leaving water is about 3 times for baseboard, 1.5x for fan coils

Extended Surface Heat Exchanger

- Coils: Many many fins of conductive aluminum attached to copper pipes
 - Filled with refrigerant or water
 - Direct Expansion of refrigerant= DX

Coils: increase heat transfer area in a small space & require fans

11/12/09

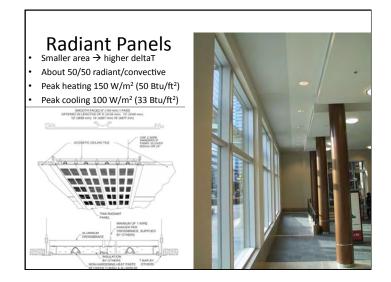
33

Coils: increase heat transfer area in a small space & require fans Refrigerant DX A-coil cooling Refrigerant DX heating

Convector / Radiator

- Hydronic terminal units
 - no energy required at unit

Convector / Radiant


- Usually only for heating
 - large Delta T (140 F) need to drive buoyancy

Emission plates under wood

Terminal Units: Radiant Heating / Cooling

- Large heat transfer areas and/or low temperature fluids result in higher *potential equipment* efficiencies
- Full floor or ceiling coverage can heat low E buildings with small 5 F/3 C surface temperature difference
- Smaller areas (furniture) or small panels require larger temperature differences require larger Delta T
- In cooling, panels may cause condensation: in climates with humid summers, humidity control is required!
- Large surface temperature differences can be uncomfortable (eg cooling > 25 F or 10C)

11/12/09 40

Heat Exchange from Surfaces

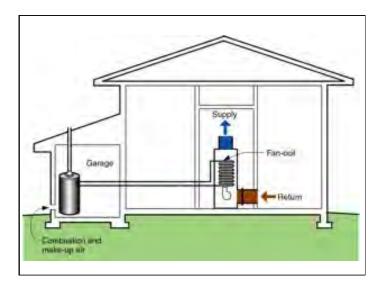
- Example: 80F(27C) floor, 72F (22C) room air
 - 15.2 Btu/hr/ft²/F heating
- Example: 60F (15.5C) ceiling, 74F (23C) room air
 - 26.6 Btu/hr/ft²/F cooling

	heating		cooling	
	Btu/hr/ft²/F	W/m² K	Btu/hr/ft²/F	W/m ² K
floor	1.9	11	1.2	7
wall	1.4	8	1.4	8
ceiling	1.1	6	1.9	11

Radiant Floor "Self-control"

- With small Delta T terminal units, there is a degree of self control
- Huge practical control and comfort benefit in low flux radiant floor and ceilings

Average Heating Load Flux W/m²	Required Floor Temperature (at 20°C [68°F] Room Temperature) °C (°F)	Average Temperature of Heating Medium		Decrease of Heat Output by 1 K (1.8°F) Increase of Room Temperature Reference Temperature		
		Tile 0.02 m²-K/W, °C (°F)	Carpet 0.1 m ² K/W, *C (*F)	Floor Surface %	W Tile %	Carpet %
80	27.3 (81.1)	31.9 (89.4)	38.4 (101.2)	14	8	5
40	23.9 (75.0)	26.2 (79.2)	29.4 (84.9)	26	16	11
20	22.1 (71.8)	23.3 (73.9)	24.9 (76.8)	48	30	20
10	21.1 (70.0)	21.7 (71.1)	22.5 (72.5)	91	59	40


Terminal Unit: Fan coils

- Use fans to below room air over coils
 - Fan-driven air movement = distribution / mixing within a space
 - Noise, maintenance issues
- Fans require electricity
 - Many existing FC are inefficient and noisy
 - Very efficient fan motors now available

Air-based Energy Delivery

- Heat Capacity: Energy required to raise the temperature or released when a material is cooled
 - Air heat capacity: 0.240 Btu/lb/F.
 - Air density: 0.074 lbs/cf @ room temp = 0.018 Btu/cf/F
 - 1 cfm = 60 cubic feet per hour
 - So... heat delivered per cfm
 - = $60 \times 0.018 \approx 1.1$ Btuh/cfm/F (1.2 W/lps/C)

Building Science 2008

Air-based 2

- Cooling air supply 55 F, and room air 75 F
 - 1.1 (75-55) = 22 Btu/hr/cfm
 - Need more flow for cooling than heating
- Heating return 70 F

- Furnace 130 F: 1.1*60= 66 Btu /hr/cfm

- Heat pump 100 F: 1.1*30 = 33 Btu/hr/cfm

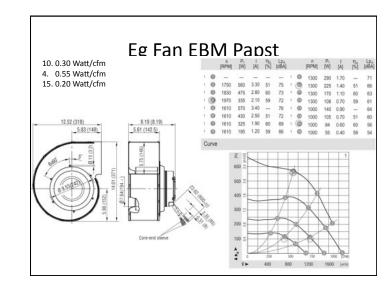
 Therefore need 2X airflow for low temp sources like heat pump and GSHP

Building Science 2008

Fans

- Efficiency
 - Rating: Watt per cfm (or cfm per Watt)
 - Higher pressure = higher power requirement
 - Power (W) = Flow rate * Δpressure / efficiency
 - -HP = cfm * Inch Water / (6356 * eff)
 - Efficiency: 0.4 (good) to 0.65 (best)
- Energy: 0.25 to 1.5 W/cfm for ducted systems
- Reduce pressure or flow required = direct energy savings

Building Science 2008


Fan Laws

- 1. Increase RPM = direct CFM increase
- 2. Static Pressure increases RPM²
- 3. Horsepower increases with RPM³
- Double pressure means 1.41 times RPM
- Requires 2.8 times horsepower
- Energy saving designs uses low CFM and/or Low ΔP

Building Science 2008

Fan Efficiency Examples

- Fantech FR125
 - 110 CFM @0.2"wg 19 Watts → <0.2 W/cfm
 - Low pressure required
- Fantech FX8
 - 400 cfm@ 0.25"wg 115 W → 0.3 W/cfm
- Furnace fans, fancoil fans (often 1-3 W/cfm)
 - Can be less than 1 Watt/cfm on full speed
 - ECM can be 0.1-0.5 Watt/cfm

Energy of distribution

- Furnace: 1000 cfm
 - Fan 300-800W (=1000-2700 Btu/hr)
 - 1.5 to 4% of energy delivered
- Heat Pump
 - Fan 600-1600 W (3 to 8%)
- Radiant floor
 - Pump 85W (0.4%)
- Distribution energy can vary by 5X to 15X

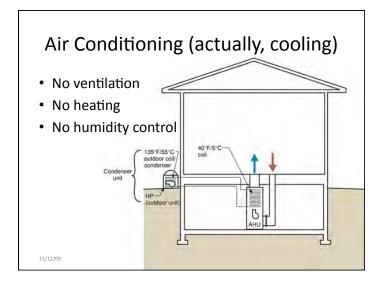
Distribution

- Voids for ducts can be built into structure
- Voids for pipes require less, but some,

Air Terminal Units: Diffusers

- Air-based heating/cooling systems need to manage airflow paths in the space served
- Flow can be managed by velocity and surface temperatures
- Supply high velocity to ensure good throw
 - 500 fpm is not too loud but will throw a long way
 - Lower velocity OK if little mixing needed

Terminal Units

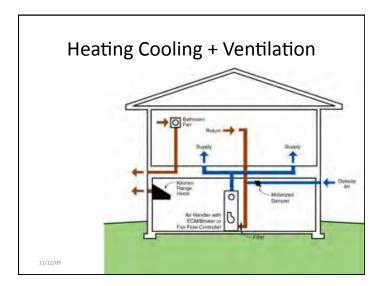

- Sensible+ latent (VAV/CAV)
 - Local fancoil w/drainpan
 - Central coils with drain pans
- Sensible
 - Chilled panels, beams
 - Chilled structure
 - Dry fan coils
 - Central dry coils

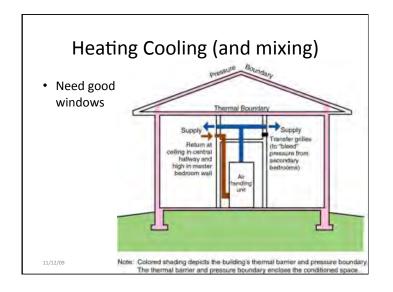
11/12/09

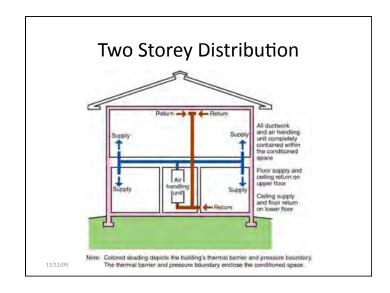
56

Systems

Heat Production
Rejection / Collection
Distribution

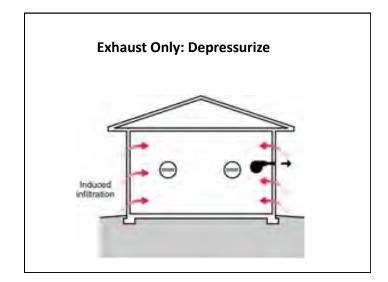


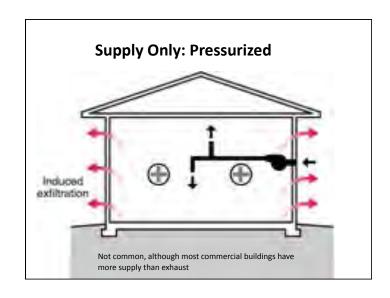

Small Residential HVAC


- Cooling DOES NOT mean humidity control
- Energy removal for lowering temperature:
 - Sensible energy
- Energy removal to condense water vapo
 - Latent Energy
- Ratio of Sensible Heat Ratio =SHR
 - Normal cooling equipment 65% sensible
 - As enclosures become energy efficient the required SHR drops and latent becomes more important!

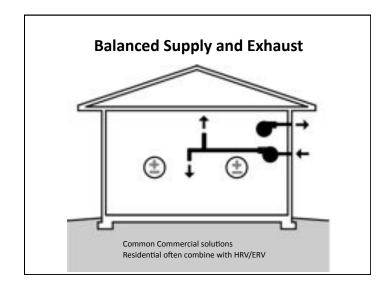
11/12/09

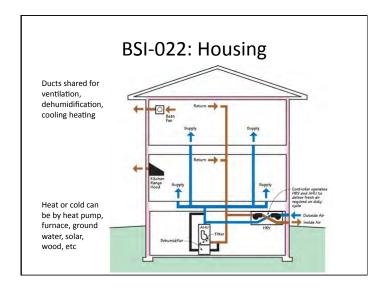
/12/09

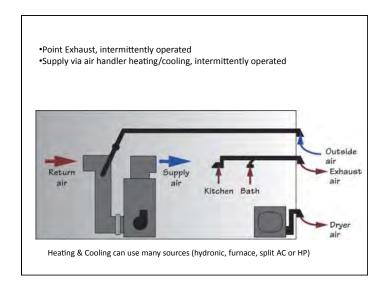


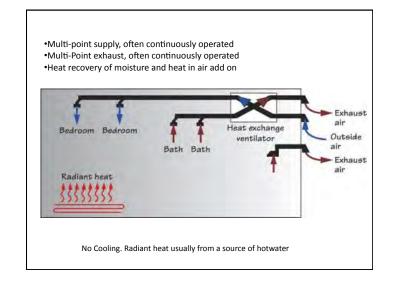


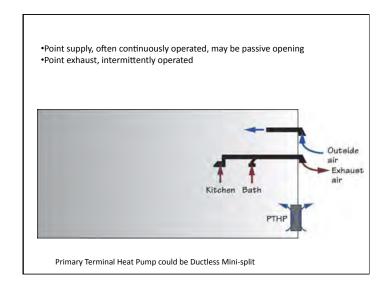
Types of Controlled Ventilation Systems

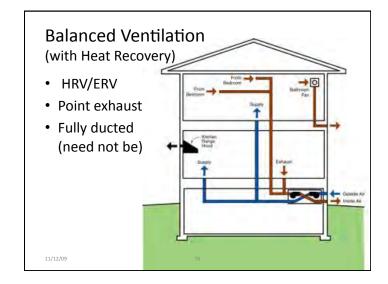

Exhaust Ventilation Supply Ventilation Balanced Ventilation

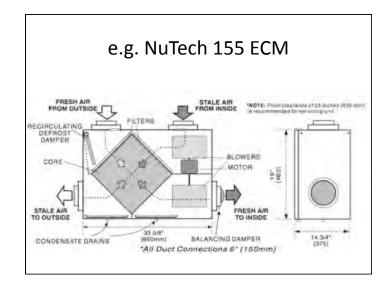












Ductless Mini-split Many systems now variable speed to match load, increase dehumidification, and reduce energy use

Systems with SEER26 and HSPF=11 available

HRV/ERV

- Heat Recovery Ventilator
 - This is a ventilation system that recovers heat from the exhaust air and transfers to incoming air
- Enthalpy/Energy Recovery Ventilator
 - Transfer heat and humidity from incoming to exhaust
- Both, beware poor electric motor efficiency
 - Aim for less than 1 W/cfm

Air-side Economizer

- Through-wall paddle fans can deliver air at very high efficiencies (10-25 cfm/Watt)
- E.g., If $t_{out} = 65F \& t_{in} = 74 F$
 - @1.1 Btu/cfm/F & Δ 9F = 10 Btu cooling / cfm
 - 15 cfm/Watt → 150 Btu /Watt fan
 - EER of 150 = COP= 44!!
- If only 1 cfm/Watt VAV → COP= 2.9
 - AC or water side economizer will be better!!

Natural ventilation

- · Airflow driven by natural forces
 - Wind
 - Buoyancy (hot air rises, cold air falls)
- Avoids fan energy
- Can be used for ventilation
 - Lower flows, risk of insufficient air= bad IAQ
- Cooling
 - Higher flows, only risk is occasional overheating

Natural ventilation cooling

- Airside Economizer using natural pressures
 - Large airflows needed as T_{out} > 65 F
- Must throttle airflow as T_{out}<60 F for comfort
- Little airflow possible when T_{out}<40F
 - Frost, comfort problems
- Most low energy buildings have low cooling loads, most internally generated

Conclusions

• Lots of choices, lots of room for improvement

HVAC by the numbers

- Typical office AC required: 400 sf/ton (sensible+latent)
- Typical office AC airflow: 400 cfm/ton
 - Thus about 1 cfm/sf
- Office fresh air req't: 0.1-0.2 cfm/sf
 - Thus 5x to 10x less than cooling
- Classroom fresh air: 0.5 cfm/sf
- Coil velocity: 300-500 fpm
 - Thus, 400 fpm=400 cfm/sf coil, 1 sq ft coil/ton AC
- Typical duct velocity: 600-1500 fpm (noise!)
 - 0.30 to 0.70 sf duct per ton AC
- 200 cfm of hot-humid ventilation= 1 ton AC

11/12/09

85