

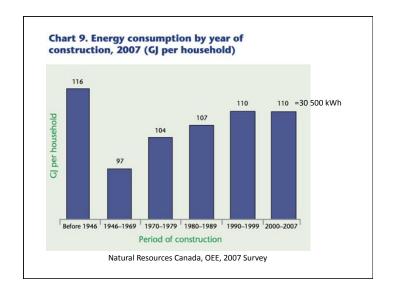
Towards Net Zero Housing

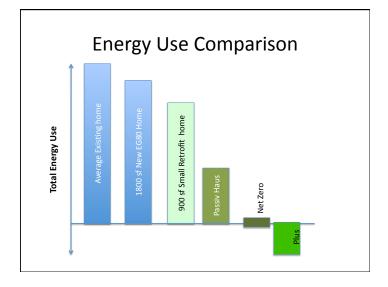
www.BuildingScience.com

Dr John Straube P.Eng University of Waterloo Building Science Corporation

Presentation Outline

- · What is Net Zero Energy
- Why build NZE
- General


Net Zero Energy

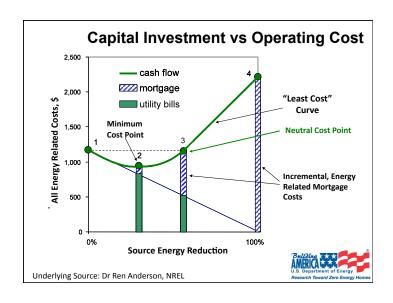

- Generate as much energy in a year as you consume
 - Generation: on site, usually solar, sometime wind
 - 1.0 kWh = 3.6 MegaJoule = 3412 BTU =0.12 m³ NG
 - Energy can be electricity, natural gas, oil, LPG
 - Annual: Make up for low winter solar gain
 - Wind can be more in winter than summer
 - Uses the grid as a big 100% efficient battery
- PlusHouses *produce* more than they consume

What uses energy in a house?

- Space heating: Big deal in Canada! (50-65%)
 - 10 000 to 30 000 kWh and up for newish house
- Other
 - Domestic hotwater (≈4000+ kWh)
 - Refrigeration (500 kWh)+ Range (500 kWh) = 1000
 - Washer (250 kWh), Dryer (900 kWh) = 1150
 - Lighting (750-2000 kWh)750
 - Plug and misc (1000-3000 kWh)2000

Typical Household: 15 000 to 35 000 kWh

Generation or Conservation?


- Big Question!
 - Easy Economics when Net-Zero Energy
 - Compare \$/kWh/yr for each choice
- PV costs \$7500/kWp installed
 - Produces 1100-1250 kWh/yr
 - About >\$5/kWh/yr (so \$150 000 for typical home)
- Wind costs vary a lot. Large are cheapest.
 - Small wind (<50 kW) is expensive because it does not produce as much as they say

Strategy

- Should we build NetZero Houses?
 - On site renewables are not very cost or resource effective
 - Who will pay for the grid when we get a lot of NZE?
- But, Fun to try!
- Reduce heating loads first and foremost
- Reduce DHW, appliance, lighting loads

Heating Load Reduction

- Cut heating load by around half
 - Insulation levels should be roughly doubled
 - Airtightness should be cut as much as practical
- Precise values will depend on relative costs
- Attics are cheaper to insulate with loose fill
- Smaller and simpler houses are easier

Heating Equipment

- High efficiency heating
 - Condensing furnace if you have gas
 - Combo instantaneous boilers w/microstorage
 - Air-source heatpumps with no or little backup
 - Ground-source heatpumps (esp for large houses)
- High efficiency, low wattage HRVs
 - Ventilation rates are often too high
 - Distribution is important for IAQ
- Active solar should be investigated

DHW

- Solar assisted hotwater usually justified
 - Cheaper than PV
- Low hotwater draw appliances are important

CMHC Riverdale House:

- NetZero in Edmonton! Duplex
- 5.6 kW PV, 6-30 tube solar hotwater
- 17 000 liter storage tank

5700 HDD C / 10 200 F

Decisions and Durability

- Mechanical equipment
 - 15 to 25 yrs for furnace, heat pump etc
- Photovoltaic
 - -25 35 yrs
- Wind turbines
 - 15-30 yrs
- Insulation
 - 50 to 100 yrs
- Appliances
 - 13-20 years

Riverdale Performance Data

- Duplex: key!
- R100 roof
- R55 wall
- Triple windows
- R50 basement
- R24 slab
- 0.5 ACH@50 Pa

Predicted Annual Energy Consumption		
Total annual energy use:	61.51 kWh/m3	
Space heating:	33.65 kWh/m	
Domestic water heating:	9.44 kWh/m	
Appliances/lighting:	16.39 kWh/m	
Mechanical ventilation:	2.02 kWh/m	
Predicted Annual Energy Production	(by heated floor area	
Total annual energy production:	63.01 kWh/m	
Passive solar space heating:	18.68 kWh/m	
Active solar space heating:	9.57 kWh/m	
Active solar domestic water heating:	8.15 kWh/m	
Solar electricity:	26.60 kWh/m	
Predicted Annual Energy Balance:	+1.5 kWh/m	

CMHC Avalon House Red Deer, AB

- Single Family, wow
- R87 roof
- R70 wall
- R60 slab, No basement
- Triple windows, R5_
- 0.5 ACH@50 Pa
- 8.6 kW PV
- SHW

5500 HDD C / 10 000 F

CMHC Toronto Now House

- Retrofit of a 1500 sf (incl basement) 1950 house
- R36 roof, R40 wall, R25 basement, R25 slab, R6 triple glazing, 2.6 ACH50
 - Somewhat under-insulated for NZE, even in Toronto
- 2.7 kW PV, 52 sf evacuated tube solar collector
- Not Net Zero Energy
 - Needs 8000 kWh of natural gas/yr

4000 HDD C / 7200 F

CMHC Minto House Ottawa

- Larger 310 m² floor area
- R60 roof, R44 Wall R5.7 Triple windows
- R40 basements R15 slab
- 0.65 ACH50
- 6.2 kWp PV
- Large SHW
- Market ready design

Now House

- Excellent low-energy retrofit
- Could be NZE with another 6kWp of PV
- Better roof insulation would likely have made sense
- Better airtightness important
- Too much thermal bridging

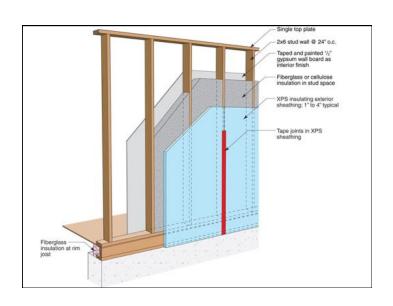
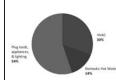


Figure 2. Dimension lumber and plywood trusses screwed to the sheating on sixteen-inch centers provide adeqate insulation space and a nailing base for finish siding.

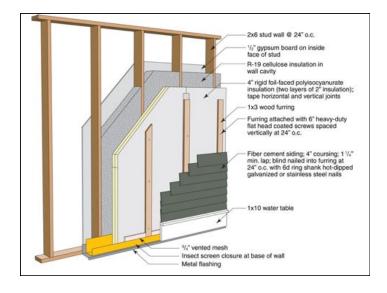
Comparison of CMHC Equilibrium

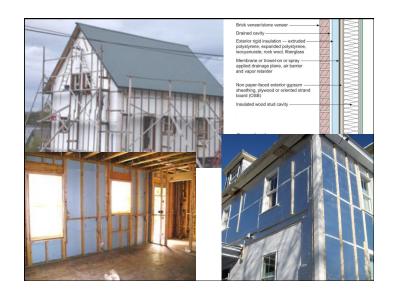

• NZE Possible: Super-insulated, Super-tight, large PV arrays, large SHW systems

Location	Now Toronto	Avalon Red Deer AB		ecohome Ottawa
HDD (18C)	4000	5500	5600	4600
Floor Area (heated m2)	139	240	234	310
Total Site Energy (ekWh)	13475	13094	14391	20646
Heat Energy (kWh/m2)	23.1	23.9	33.7	40.2
Roof (R)	36	87	100	60
Wall	40	70	56	44
Window	5.7	. 5	7.3/10	5.7
Basement walls	25	none	e 54	40
Slab	25	60) 24	15
ACH@50	2.6	0.5	0.5	0.65
PV Installed (kWp)	2.7	8.6	5.6	6.2
SHW produced (kWh)	1824	3886	1907	6665
PV produced (kWh/yr)	2800	9569	6224	8184
Notes	Not NZE		Duplex	

Pill House, Vermont, 2800 ft2

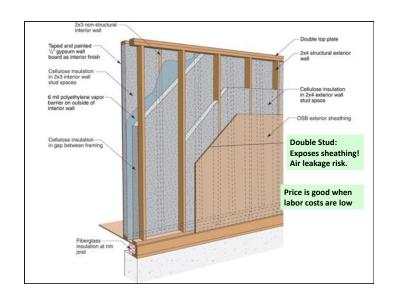
- 10 kW wind turbine on 120 ft tower=6500 kWh
- R56 ceiling, R40 walls, triple-glazed window
- R20 basement, 2 ACH50
- South-facing
- GSHP

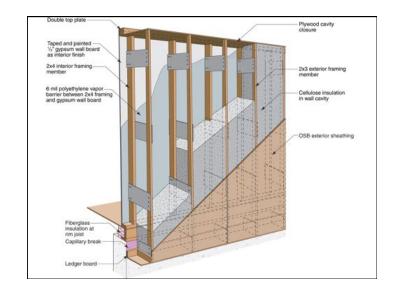

Thermal bridges

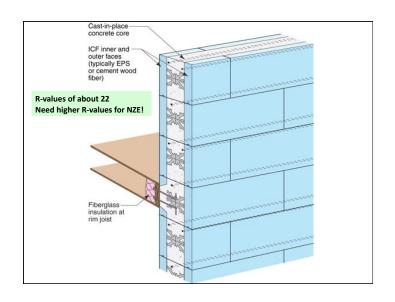

- Thermal bridges provide shortcut for heat through insulation
- Heat passes through the structural members
- Common offenders
 - Floor and balcony slabs
 - Shear walls
 - Window frames
 - Steel studs

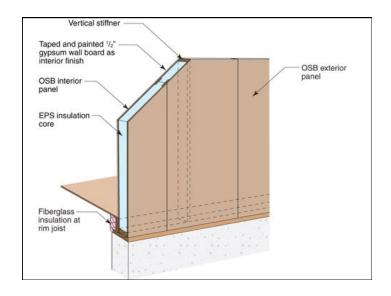
Building Science 2008

Insulation and Thermal Bridges



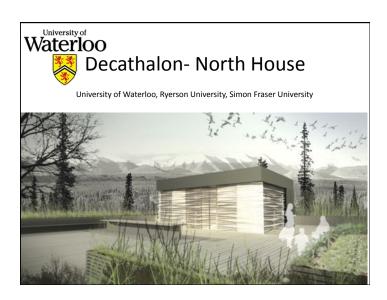






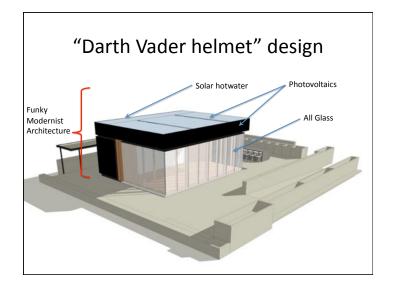
Structural Insulated Panels

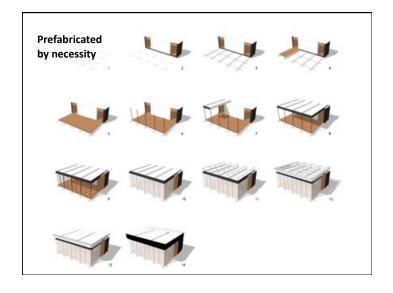
- Advantages
 - Superior blanket of insulation
 - if no voids then no convection or windwashing
 - May seal OSB joints for excellent air barrier system
- Therefore, done right = excellent
- Small air leaks at joints in roofs can cause problems
- Don't get them too wet from rain
 - Low perm layers means limited drying

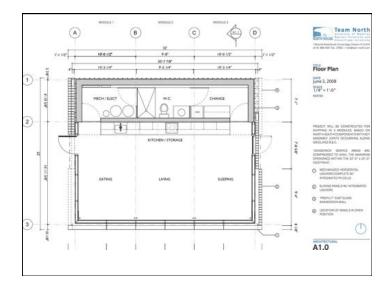

Building Science 2008

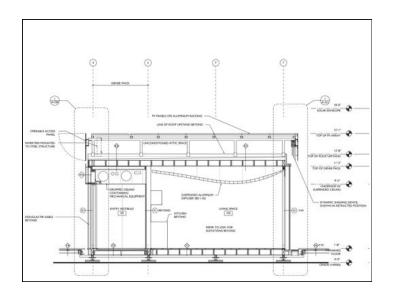
nsulation and Thermal Bridges No 37/6

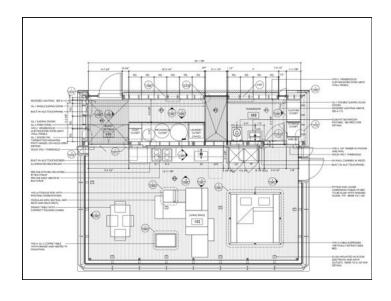
Solar Decathalon

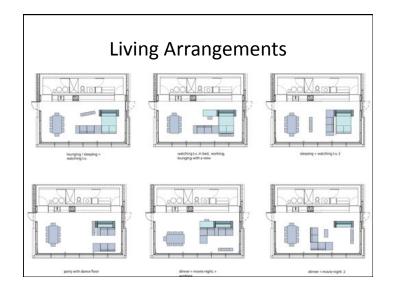

- Design 800 sf all-solar powered house
- Be comfortable, healthy safe
- Ship to Washington DC and build on site in under 3 days
- Do all of above using University students in Architecture and Engineering

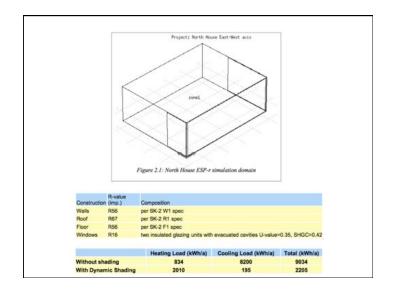


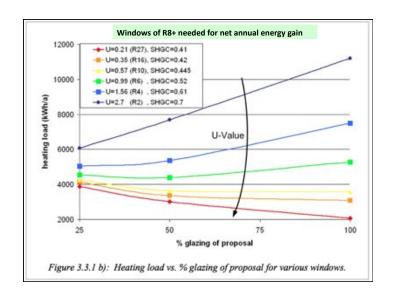


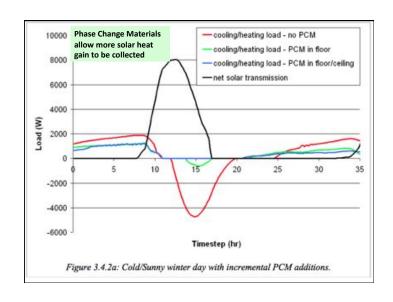

Solar Decathalon

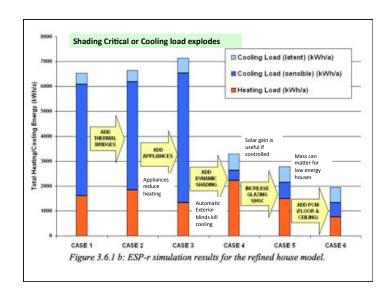

- Design 800 sf all-solar powered house
- Be comfortable, healthy safe
- Ship to Washington DC and build on site in under 3 days
- Do all of above using University students in Architecture and Engineering









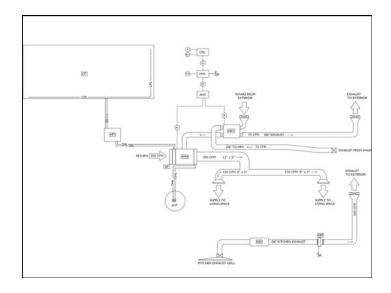


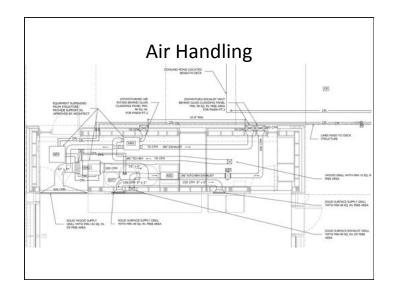
Important conclusions

- With exceptional windows (R10) and dynamically operated shades...
 - Increasing window area saves energy!
- For ultra low energy buildings
 - PCM can matter (small mass goes a long way)

Blinds

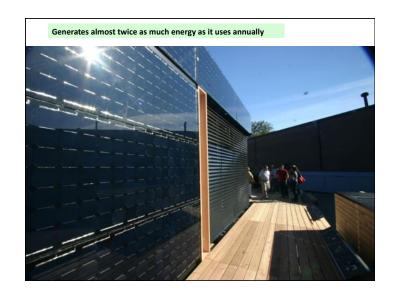
- Interior
- Allow privacy & daylight





Mechanicals

- Two-stage water-water heat pump
- Supply of heat is vacuum tube solar
- 1st pump to 38 / 95F
- 2nd pump to 60 / 140 F
- Digital Scroll by Emerson, 10:1 turn down ratio
- Smallest unit now is 3.5 tons



Conclusions

- With enough money, we can build net positive houses that look "funky cool" or "normal"
- We have the technology
- Is the expense worth it?
 - Depends. Today it is expensive.
- Is net positive the best solution? What about off-site wind, hydro, biomass, natural gas, etc.