High-performance Buildings

For: Association of Jesuit Colleges and Universities (AJCU)

Presented by:

John Straube Ph.D. P.Eng.

University of Waterloo / Building Science Corporation

Pre-WWII Buildings

- No added insulation (or very little)
- Heating systems and some natural ventilation
- · No air conditioning
- No vapor barriers
- Few explicit air-tightening or "draft-stopping" details
- Masonry and old-growth solid timber structures
- · Plaster is the dominant interior finish

Building Science.com

6

Changes ...

- · Expectations are rising
 - Faster design and construction
 - Lower risk of delays / cost over runs
 - Lower operating costs
 - less energy consumption (Codes)
 - more comfort and IAQ
- In short ...

better buildings at less total cost

Pre-WWII Buildings

- No added insulation (or very little)
- Heating systems and some natural ventilation
- · No air conditioning
- No vapor barriers
- Few explicit air-tightening or "draft-stopping" details
- Masonry and old-growth solid timber structures
- · Plaster is the dominant interior finish

Building Science.com

ce.com

Performance?

- More than on-time, on-budget, to code
 - Safe
 - Healthy
 - Comfortable
- A growing clamor for....
 - Durable
 - Low-energy
 - Maintainable
 - Modifiable
 - Repairable
- All delivered reliably, predictably

Why such poor performance?

- Not enough insulation, too much air leakage
 - Thermal bridges (windows R3, steel stud R5-R6)
- Not enough solar control
 - Windows! (too large, overhangs, trees)
- Too much ventilation
 - And/or poor control of it
- Too many complex HVAC & control systems
 - HVAC systems no one understands

Prescription of High Performance

- Good skin
 - Rain, air, heat, vapor control
 - Simple to understand/analyze assemblies
- Good HVAC
 - Control temperature, RH, Fresh air seperately
 - Simple to understand/analyze systems
- Good design
 - Daylight, view, program, enjoyment
 - Assume future changes will occur

This seminar

- Enclosure
 - Roofs
 - Walls
 - Windows
- HVAC briefly
 - Humidity
 - Ventilation
 - Energy

Skin: Enclosures in Context

- Enclosures are key to comfort and durability
- Enclosures reduce space heating/cooling
 - and help with lighting, ventilation
- We still need **energy** for other things
 - Dehumidification, cooling, lights, computers, etc
- But
 - Bad enclosures ruin good HVAC
 - Bad HVAC can ruin good enclosures

www.BuildingScience.com

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science

Enclosures No. 23 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- · 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people

• Distribution - a building function

Functional Layers

SUPPORT
CONTROL
PROSH

Building Science

Basic Enclosure Functions • Support - Resist & transfer physical forces from inside and out • Lateral (wind, earthquake) • Gravity (snow, dead, use) • Rheological (shrink, swell) • Impact, wear, abrasion • Control - Control mass and energy flows • Finish - Interior and exterior surfaces for people

Basic Enclosure Functions Support - Resist & transfer physical forces from inside and out Control - Control mass and energy flows **Functional Layers** • Rain (and soil moisture) - Drainage plane, capillary break, etc. Air - Continuous air barrier Heat - Continuous layer of insulation - Balance of wetting/drying Finish - Interior and exterior surfaces for people Building Science.com Enclosures No. 27 /

Basic Enclosure Functions Support Resist & transfer physical forces from inside and out Control Control Control mass and energy flows Finish Interior & exterior surfaces for people Color, speculance Pattern, texture

History of Control Functions

- Older Buildings
 - One layer does everything
- Newer Building
 - Separate layers,
 - ... separate functions

Building Science.com

No. 30

What is a high performance enclosure?

- High levels of control
- But, poor continuity limits performance
- & Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- Thus: continuity + high levels of control

Next Steps • 1. Rain Control - most important • 2. Air Control - Energy, health, humidity • 3. Thermal Control - Solar shading - Thermal bridging

15 of 42

Drained Walls Drained systems preferred Account for joints and penetrations as well as installation defects and material failure

Windows and Doors

- All penetrations should be drained, regardless of the approach taken to the element
- Windows and doors are the most critical openings to drain
- Rough opening must be drained

Leaky windows

• Studs and sheathing are sensitive to leaks

Air-Water-Vapor

- · Often thin layers
- Can be
 - 1. Water control (vapor permeable, not airtight), or
 - 2. Air & water control (vapor permeable), or
 - 3. Air, water & vapor (vapor impermeable).
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

Airflow control

- · Airtightness critical for all climates
 - Control condensation (summer and winter) and energy waste
- Airflow Control Layer
 - Practically, an air barrier system
- Cant be TOO tight
 - But must provide ventilation

95/175

Airtightness

- Materials not important, system is
- GSA and Army Corp requiring testing to tightness targets now
 - 0.40 and 0.25 cfm/sf@75 Pa respectively
- IECC/IRC likely to require soon
 - Measured at 50 Pa in houses

Building Science.com

96

Air + Water Barrier

- Beware:
- Around windows
- Canopies
- Parapets

Air Barriers are coming

- More stringent numerical targets
 - GSA 0.4 cfm/sf @0.3 in w.c.
 - Army Corp 0.25
- Testing of whole buildings becoming common

3. Thermal Control www.buildingscience.com

Thermal control

- Ensure Comfort
 - Avoid hot/cold interior surfaces
- Warms surfaces = durability
 - Avoids condensation in hot and cold weather
 - hence, a durability and health strategy
 - Keep structure warm and dry and stable
- Save Energy
 - Reduce heat flow

12-04-03

Thermal Control

- Insulation (conduction)
 - Slows heat flow in and out
- Windows (conduction, radiation)
 - Slow heat flow in and out
 - Control solar gain: allow or reject?
- "cool" roofs
 - Reduce solar gain
- Radiant barriers
- Shading (radiation)

Solar Shading

- · Reduce window area
- Provide shading (do analysis)
- Low-solar gain

Insulation

- How much? Use much more than normal practise
- Comfort & condensation resistance:
 - True R5-10 is usually enough, but
- For energy / environment:
 - "As much as practical", eg R10-R20
- "True" R-value is what matters
 - Control thermal bridging!
- Increased insulation should reduce HVAC capital as well as operating!

Building Science

Thermal Continuity / Thermal Bridges

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few bridges
- Major offenders / weak spots
 - Penetrating slabs (<R1)</p>
 - Steel studs (<<R1)
 - Windows (R2-R3)
- Product of Area and U-value defines significance to energy and condensation

White roofs

- Lower heat gain: great!
- Reduce stress on exposed roof membranes
- **But**: Reduces drying out of roof
- Thus: Require better moisture control!
 - Air barrier
 - Construction moisture

Building Science.com

Roofs 146

Conclusions

- Continuous drainage and rain control layer
- Continuous air control layer (air barrier)
- Continuous thermal control layer
 - Limit the thermal bridges

Good Mechnicals

The other half of the pie

Functions

Five Critical functions are needed

- Ventilation
 - "fresh air"
 - Dilute / flush pollutants
- Heating
- Cooling
- Humidity Control
- Air filtration / pollutant Removal
 - Remove particles from inside and outside air
 - Remove pollutants in special systems

-04-03

What do you need to deliver?

Type	Temperature	Humidity	Pressure	Examples
Ia	•			Heated house, warehouse
Ib	•	0		Heating and normal A/C
Íc	•		0	Heating + exhaust fans
Id	•	0	0	Heating+ A/C + exhaust fan
Па	•	•		Museum, fruit storage
Пb	•	•	0	Pressurized + controlled
Ш	•	•	•	Special labs, chip fabrication
IV	•		•	Dust controlled manufacturing
V		•	•	
VI				

Note: Directly controlled O - Incidental Implicit

All require metered deliver of fresh air, and some exhaust of polluted air

Common Air-based Sysems

- · CAV systems
 - high energy consumers but provide outdoor air
- VAV
 - decent energy performance, but rarely supply desired ventilation (fresh) air rates
- DOAS: Dedicated Outdoor Air Systems
 - provide Ventilation (+ almost always dehumidification) only
 - separate terminal equipment does heating and cooling
 - Highest performance, easy to design & fix

12-04-03

Constant Air Volume SUPPLY AIR REHEAT COILS OUTSIDE VENTILATION AIR Great RH & T control (Dewpoint of 55 all the time) Terrible energy performance (reheating almost all the air, all the time) Often no designed exhaust air: "pressurize" building

Variable Air Volume

Poor IAQ: ventilation controlled by thermostat
Poor/no RH control: depends on cooling coil operation
Either good energy performance /poor RH, or good RH / poor energy
Often no designed exhaust air: "pressurize" building

12-04-03
156

VAV: Fixing How it works

- Pre-treat all outdoor air to reduce humidity
 - Target leaving air dewpoint of <50F
 - Cannot use "cooling" only, need dehumidification
- Ventilation air still is uncertain
 - Thermostat controls ventilation!
 - Require reheating to avoid cold rooms at min. flow
 - In multi-zone system, one zone's ventilation needs are different than an others'
 - Hence, either over-ventilation or under-ventilate

Designer's Question

- How is indoor humidity controlled when it is 65-80F outdoors and raining (100%RH)?
 - Sensible load is very low (lights+people)
 - Latent load high (ventilation + people)
 - AC does not run, or does not run much
- Answer usually is "not"
 - Reheat is energy intensive but works
 - ERVs reduce humidity load, they don't eliminate it

DOAS

- Dedicated Outdoor Supply
 - Supplies all required dry air and fresh air
- · All ventilation air can be pretreated
 - Air should be dried to <50F Dewpoint
 - Supply of dry air to each space controlled independent of thermostat
- Key is to decouple humidity control/ ventilation from temperature control

Energy recovery ventilation

- Reduces equipment peak capacity (saves capital \$)
- Reduces load on heating/cooling/ dehumidification (saves energy/operating \$)
- Usually makes sense for any large mechanical ventilation flow

Conclusions

- Key to good mechanicals is to separate ventilation from heating/cooling
- Consider humidity control in climates where it is needed

