

Assessment of Durability for Cold Climate Interior Insulation

Dr John Straube, P.Eng., University of Waterloo, Waterloo, Canada Chris Schumacher, B.Tech. M.A.Sc. Building Science Corporation

Scope

- Cold climate
- Load-bearing masonry
 - Durability of the masonry
- Interior Retrofit

- 1. Freeze-thaw damage: colder +reduced drying
- 2. Air leakage condensation on interior face of masonry
- 3. Rot / corrosion of embedded elements (Kohta Ueno)

What to do?

- Manage risks
- Eliminate rain leaks
- Eliminate air leakage condensation
- Minimize diffusion condensation
 - BUT allow drying

Insulation choices

- Open-cell or closed-cell spray
- board products
- Do we need interior membranes

Rain Control

 Don't change a successful mass rain control to a problematic drained one!

Windows

· Rain control and thermal continuity

Retrofit Assessment Stages

In order of importance:

- 1. Site Visit Assessment
- 2. Simple Materials Tests & Assembly Modeling
- 3. Detailed Material Tests & Assembly Modeling
- 4. Site Moisture Load Assessment
- 5. Prototype Monitoring
- 6. Maintenance and Repair

1. Site Visit

- Most important!
 - Walk around exterior and interior of the building
- Rain leaks?
 - Large/small, often/rare
- Freeze-thaw damage
 - parapet, chimney, at-grade, below windows
 - Check all water concentration points

2. Simple Tests & Modeling

- Simple Tests
 - Water uptake A-value (transport)
 - Saturation moisture content (storage)
- WUFI modeling
 - Many choices
 - Requires knowledge, experience, comparison to measured data, and real experience
 - Need much better guidance on how to model and analyze results

Fundamental Basis

- Fagerlund (Lund University, 1970s)
- No such thing as a freeze-thaw resistant material!
- There is a <u>critical degree of saturation</u>, S_{crit}
 - Below S_{crit} no freeze-thaw damage will occur regardless of number of freeze-thaw cycles
 - Above S_{crit} damage is measurable after only a few cycles
- What is S_{crit}? Guess or Measure.

Assessment for Cold Climate Interior Insulation 2012.04.04

Hygrothermal modeling

- · Model wall before and after retrofit in WUFI
- Compare moisture levels in all layers
- Count freeze-thaw cycles
 - Below freezing, above critical degree of saturation

3. Detailed Tests & Modeling

- Measure Quantitative Freeze Resistance
 - E.g. Fagerlund's Critical Degree of Saturation
- BSC / U Waterloo has developed methods over time
 - See ASHRAE paper (Mensinga et al)
 - Uses Frost-dilatometry
 - Brick expands when freeze-thaw damage occurs

Assessing Critical Degree of Saturation · Assess strain at various degrees of saturation Critical degree of saturation at x-intercept · Canada Brick #1 · Caruda Brick #2 # Canada Brick #3 200 0.50 0.60 0.70 0.80 0.90 1.00 Degree of Saturation (Vacuu P. Memings, UsrW 865 Assessment for Cold Climate Interior Insulation 2012.04.04

4. Site Load Assessment

- Driving rain is the largest load
- Predictive methods available
 - But large uncertainty
- So, measure site driving rain load
 - Monitor rain deposition on building
 - Monitor run down
- · Research needed
 - Esp. run down and drip edges

5. Prototype Monitor

- Install retrofit over a small area
- Measure temperature and moisture content
- Compare wetting, MC, temperatures to model results
- Potentially could compare bricks after 1-2 years,
 - eg. Ultrasonic transit time

6. Maintenance & Repair

- As for all building enclosures
 Require a program of inspection/repair
- Mortar will often be damaged first
- Downspouts? Roof flashing? Backsplashing?
- Formal manual for owner would be helpful
- Inspection cycle (2 yr, 5 yr)

Conclusions

- · Assessing masonry durability
 - Must assess as-built condition
 - Control rain penetration
 - Control air leakage
- Need better material freeze-thaw resistace measures
- · Understanding rain loading is critical
- More measured examples demonstrating performance

