

Pre-WWII Buildings

- No added insulation (or very little)
- Heating systems and some natural ventilation
- · No air conditioning
- No vapor barriers
- Few explicit air-tightening or "draft-stopping" details
- Masonry and old-growth solid timber structures
- · Plaster is the dominant interior finish

Building Science.com

5

Five Fundamental Changes

- 1. Increasing Thermal Resistance
- 2. Changing Permeance of Enclosure Linings
- 3. Water/Mold Sensitivity of Materials
- 4. Moisture Storage Capacity
- 5. 3-D Airflow Networks

Building Science.com

Pre-WWII Buildings

- No added insulation (or very little)
- Heating systems and some natural ventilation
- · No air conditioning
- No vapor barriers
- Few explicit air-tightening or "draft-stopping" details
- Masonry and old-growth solid timber structures
- · Plaster is the dominant interior finish

Building Science.com

cience.com

Changes ...

- Expectations are rising
 - Faster design and construction
 - Lower risk of delays / cost over runs
 - Lower operating costs
 - less energy consumption (Codes)
 - more comfort and IAQ
- In short ...

better buildings at less total cost

Performance?

- More than on-time, on-budget, to code
 - Safe
 - Healthy
 - Comfortable
- A growing clamor for....
 - Durable
 - Low-energy
 - Maintainable
 - Modifiable
 - Repairable
- All delivered reliably, predictably

www.BuildingScience.com

Why such poor performance?

- Not enough insulation, too much air leakage
 - Thermal bridges (windows R3, steel stud R5-R6)
- Not enough solar control
 - Windows! (too large, overhangs, trees)
- Too much ventilation
 - And/or poor control of it
- Too many complex systems
 - HVAC systems no one understands

Beware Unintended consequences

- Improving enclosure (windows/ roofs) changes things
- Less heat gain
 - = change in AC performance
 - = more condensation
- Less heat flow
 - = less drying
- More airtightness
 - = mech ventilation required

Complexity

- Modern buildings and systems are complex
 - Good design must manage complexity
 - Allows for focus on the big things
 - e.g., program, massing, quality

Enclosure and HVAC can be made simpler and more robust by early design-stage decisions

www.BuildingScience.com

New Solutions

- Step change in performance required
- Different approach to design & construction
 - Target, predict, measure performance
 - Quality assurance/control in drawings, on site
- Different, robust, assemblies and systems
 - More tolerant of operational/construction errors
 - Less complex, easier to manage

Prescription of High Performance

- Good skin
 - Rain, air, heat, vapor control
 - Simple to understand/analyze assemblies
- Good HVAC
 - Control temperature, RH, Fresh air seperately
 - Simple to understand/analyze systems
- Good design
 - Daylight, view, program, enjoyment
 - Assume future changes will occur

Skin: Enclosures in Context

- Enclosures are key to comfort and durability
- Enclosures reduce space heating/cooling
 - and help with lighting, ventilation
- We still need **energy** for other things
 - Dehumidification, cooling, lights, computers, etc
- But
 - Bad enclosures ruin good HVAC
 - Bad HVAC can ruin good enclosures

www.BuildingScience.com

This seminar

- Enclosure
 - Roofs
 - Walls
 - Windows
- HVAC briefly
 - Humidity
 - Ventilation
 - Energy

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments.
- Includes all of the parts that make up the wall, window, roof, floor, caulked joint etc.
- Sometimes, interior partitions also are environmental separators (pools, rinks, etc.)

Building Science

Enclosures No. 28 /

Climate Load Modification

- Building & Site (overhangs, trees...)
 - Creates microclimate
- Building Enclosure (walls, windows, roof...)
 - Separates climates
 - Passive modification
- Building Environmental Systems (HVAC...)
 - Use energy to change climate
 - Active modification

Basic Functions of the Enclosure

- 1. Support
 - Resist and transfer physical forces from inside and out
- · 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people
- Distribution a building function

Functional Layers

SUPPORT
CONTROL
FINISH

Functional Layers

Building Science

Basic Enclosure Functions

- Support
 - Resist & transfer physical forces from inside and out
 - Lateral (wind, earthquake)
 - Gravity (snow, dead, use)
 - · Rheological (shrink, swell)
 - · Impact, wear, abrasion
- Control
 - Control mass and energy flows
- Finish
 - Interior and exterior surfaces for people

Functional Layers

Building Science Enclosures No. 31 /

Basic Enclosure Functions

- Support
 - Resist & transfer physical forces from inside and out
- Control
 - Control mass and energy flows
 - Rain (and soil moisture)
 - Drainage plane, capillary break, etc.
 - Air
 - Continuous air barrier
 - Heat
 - Continuous layer of insulation
 - Vapor
 - Balance of wetting/drying
- Finish
 - Interior and exterior surfaces for people

Building Science.com

Enclosures No. 32 /

History of Control Functions

- Older Buildings
 - One layer does everything
- Newer Building
 - Separate layers,
 - ... separate functions

Building Science.com

No. 3

What is a high performance enclosure?

- High levels of control
- But, poor continuity limits performance
- & Poor continuity causes most problems too:
 - E.g. air leakage condensation
 - Rain leakage
 - Surface condensation
 - Cold windows
- Thus: continuity + high levels of control

www.BuildingScience.com

Creating High Performance Buildings

Continuity is key!

- Must ensure no rain leaks, no holes
- Airflow control should be as continuous as practical
- Thermal control
 - We live with penetrations
 - Minimize steel &concrete to small local points
- Vapor control
 - Not that important to ensure continuity

www.BuildingScience.com

Next Steps

- 1. Rain Control
 - most important
- 2. Air Control
 - Energy, health, humidity
- 3. Thermal Control
 - Solar shading
 - Thermal bridging

Can be separate Combined in same material

Energy

Drained Walls

- Drained systems preferred
- Account for joints and penetrations as well as installation defects and material failure

Windows and Doors

- All penetrations should be drained, regardless of the approach taken to the element
- Windows and doors are the most critical openings to drain
- Rough opening must be drained

Air-Water-Vapor

- Often thin layers
- Can be
 - 1. Water control (vapor permeable, not airtight), or
 - 2. Air & water control (vapor permeable), or
 - 3. Air, water & vapor (vapor impermeable).
- Examples
 - Building paper, untaped housewrap, sealed and supported housewrap, fluid applied, peel and stick

www.BuildingScience.com

Air-Water Control Layers

Sloped and complex surfaces demand very high performance

Airflow control

- · Airtightness critical for all climates
 - Control condensation (summer and winter) and energy waste
- Airflow Control Layer
 - Practically, an air barrier system
- Cant be TOO tight
 - But must provide ventilation

104/175

Airtightness

- Materials not important, system is
- GSA and Army Corp requiring testing to tightness targets now
 - 0.40 and 0.25 cfm/sf@75 Pa respectively
- IECC/IRC likely to require soon
 - Measured at 50 Pa in houses

Building Science.com

105

Air + Water Barrier

• Beware:

Creating High Performance Buildings

- Around windows
- Canopies
- Parapets

3. Thermal control

- Ensure Comfort
 - Avoid hot/cold interior surfaces
- Warms surfaces = durability
 - Avoids condensation in hot and cold weather
 - hence, a durability and health strategy
 - Keep structure warm and dry and stable
- Save Energy
 - Reduce heat flow

12-03-21

Thermal Control

- Insulation (conduction)
 - Slows heat flow in and out
- Windows (conduction, radiation)
 - Slow heat flow in and out
 - Control solar gain : allow or reject?
- "cool" roofs
 - Reduce solar gain
- Radiant barriers

Solar Shading

- Reduce window area
- Provide shading (do analysis)
- Low-solar gain

Insulation

- How much? Use much more than normal practise
- Comfort & condensation resistance:
 - True R5-10 is usually enough, but
- For energy / environment:
 - "As much as practical", eg R10-R20
- "True" R-value is what matters
 - Control thermal bridging!
- Increased insulation should reduce HVAC capital as well as operating!

Building Science

Thermal Insulation

Insulation	R-value/inch	k (W/mK)
Empty airspace 0.75"-1.5" (20-40 mm)	R2.0 - 2.75	0.36 -0.50 W/m ² K
Empty airspace 3.5"-5.5" (90-140 mm)	R2.75	0.50 W/m ² K
Batt (mineral fiber)	3.5-3.8	0.034 - 0.042
Extruded polystyrene (XPS)	5.0	0.029
Polyisocyanurate (PIC)	6.0-6.5	0.022 - 0.024
Expanded polystyrene (EPS)	3.6-4.2	0.034 - 0.040
Semi-rigid mineral fiber (MFI)	3.6-4.2	0.034 - 0.040
Spray fiberglass	3.7-4.0 0.034 - 0.038	
Closed-cell spray foam (2 pcf) ccSPF	5.8-6.6 0.022 - 0.025	
Open-cell spray foam (0.5 pcf) ocSPF	3.6 0.040	
Aerogel	8-12	0.012-0.018
Vacuum Insulated Panels (VIP)	20-35 0.004-0.008	

Thermal Continuity / Thermal Bridges

- Some short circuiting is normally tolerated.
- High-performance walls tolerate few bridges
- Major offenders / weak spots
 - Penetrating slabs (<R1)</p>
 - Steel studs (<<R1)
 - Windows (R2-R3)
- *Product* of **Area** and **U-value** defines significance to energy and condensation

www.BuildingScience.co

Thermal Bridge Examples • Aluminum framed • Balconies, Exposed slab edges

Creating High Performance Buildings

Conclusions

- Continuous drainage and rain control layer
- Continuous air control layer (air barrier)
- Continuous thermal control layer
 - Limit the thermal bridges

Good Mechnicals

The other half of the pie

Functions

Five Critical functions are needed

- Ventilation
 - "fresh air"
 - Dilute / flush pollutants
- Heating
- Cooling
- Humidity Control
- Air filtration / pollutant Removal
 - Remove particles from inside and outside air
 - Remove pollutants in special systems

12-03-21

What do you need to deliver?

Type	Temperature	Humidity	Pressure	Examples
Ia	•			Heated house, warehouse
Ιb	•	0		Heating and normal A/C
Ιc	•		0	Heating + exhaust fans
I d	•	0	0	Heating+ A/C + exhaust fan
II a	•	•		Museum, fruit storage
IJЬ	•	•	0	Pressurized + controlled
III	•	•	•	Special labs, chip fabrication
IV	•		•	Dust controlled manufacturing
V		•	•	
X/I				

Note: Directly controlled O - Incidental Implicit

All require metered deliver of fresh air, and some exhaust of polluted air

Common Air-based Sysems

- · CAV systems
 - high energy consumers but provide outdoor air
- VAV
 - decent energy performance, but rarely supply desired ventilation (fresh) air rates
- DOAS: Dedicated Outdoor Air Systems
 - provide Ventilation (+ almost always dehumidification) only
 - separate terminal equipment does heating and cooling
 - Highest performance, easy to design & fix

12-03-22

Variable Air Volume

Poor IAQ: ventilation controlled by thermostat
Poor/no RH control: depends on cooling coil operation
Either good energy performance /poor RH, or good RH / poor energy
Often no designed exhaust air: "pressurize" building

12-03-22
163

VAV: Fixing How it works

- Pre-treat all outdoor air to reduce humidity
 - Target leaving air dewpoint of <50F
 - Cannot use "cooling" only, need dehumidification
- Ventilation air still is uncertain
 - Thermostat controls ventilation!
 - Require reheating to avoid cold rooms at min. flow
 - In multi-zone system, one zone's ventilation needs are different than an others'
 - Hence, either over-ventilation or under-ventilate

Creating High Performance Buildings

Designer's Question

- How is indoor humidity controlled when it is 65-80F outdoors and raining (100%RH)?
 - Sensible load is very low (lights+people)
 - Latent load high (ventilation + people)
 - AC does not run, or does not run much
- · Answer usually is "not"
 - Reheat is energy intensive but works
 - ERVs reduce humidity load, they don't eliminate it

DOAS

- Dedicated Outdoor Supply
 - Supplies all required dry air and fresh air
- · All ventilation air can be pretreated
 - Air should be dried to <50F Dewpoint
 - Supply of dry air to each space controlled independent of thermostat
- Key is to decouple humidity control/ ventilation from temperature control

Energy recovery ventilation

- Reduces equipment peak capacity (saves capital \$)
- Reduces load on heating/cooling/ dehumidification (saves energy/operating \$)
- Usually makes sense for any large mechanical ventilation flow

Continue some continue continu

Conclusions

- Key to good mechanicals is to separate ventilation from heating/cooling
- Consider humidity control in climates where it is needed