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Introduction
• Retrofit interior insulation of masonry buildings
• Exterior insulation ideal solution
• Interstitial condensation, freeze‐thaw issues

• Moisture‐sensitive (wood) beams and joists 
embedded in masonry structure
– Reduced heat flow
– Higher localized relative humidity
– Reduced drying (with low‐permeance insulations)
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• In SK (Zone 7B), joists 
stayed dry (10-15% MC)

• In ON (Zone 6A), at times 
20%+ MC
– Capillarity from foundation?
– Rainwater absorption 

through face of masonry?

Literature Review (DuMont et al. 2005)
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Literature Review (Con’t)

 Scheffler (2009)
 DELPHIN 2D hygrothermal simulations, steady state
 Interior-sourced air and vapor flow risks
 Transient simulations; beam end MCs increase w. insul.
 Historic & modern methods to address beam end MCs

 Morelli (2010)
 Gap in insulation above and below beam area 

(12” above and below → 30” left exposed)
 60% heat flow reduction from full insulation
 45%  reduction with “gapped” insulation
 “Gapped” insulation has less wetting than full insulation
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HEAT 3D Three-dimensional simulations
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78” x 78” (2 m x 2 m) wall / 18” (0.45 m) thick / 12” x 8” (0.3 m x 0.2 m) beam
Insulated cases add 2” (50 mm) of closed-cell spray foam

Beam Case Simulation Geometries
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Firecut Beams
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3D Heat Flow Simulations (Beam)

 Interior 68 F (20 C)
 Exterior 7 F (-14 C)      (Boston 99.6% design T)
 Steady state (no thermal mass).  Air space and no air space

Uninsulated Case Insulated Case
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3D Heat Flow Simulations (Beam)

 Thinned foam ~16” around beam in all directions
 3 mm aluminum plates, sides of beam, 2x beam pocket interior depth
 Air leakage and condensation risks?  44-46 F (6-8 C) → 70 F, 35-40% RH)

Thin (1”) Foam Case 3 mm aluminum plates
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3D Heat Flow Simulations (Beam)

Horizontal Sections (Mid-height)

Uninsulated Insulated 3 mm plates
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Joist Cases

78” x 78” (2 m x 2 m) wall / 18” (0.45 m) thick
2”x12” (0.5 m x 0.3 m) wood members at 16” (0.4 m) o.c. spacing
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3D Heat Flow Simulations (Joist)

Horizontal Sections (Mid-height)

Uninsulated Insulated 3 mm plates
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3D Heat Flow Simulations (Joist)

Horizontal Sections (Mid-height)

Thinned Foam Omit band insulation
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Hygrothermal (1D) Simulations

 One dimensional section same in uninsulated and 
insulated cases

 Modify wood material thermal conductivity, to 
result in correct beam end temperatures

 Needed to develop a “temperature index” at end 
of beam pocket from HEAT3 simulations
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Beam End Temperature Index

Uninsulated ~60% ∆T inboard of pocket

Insulated ~90% ∆T inboard of pocket
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Hygrothermal (1D) Simulations

Beam end element 
plotted wood MC 
(outermost 1”/25mm)

Air leakage (source) 
from interior
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Uninsulated Beam Results

Exterior: Boston (cold year)
Interior T: 68 F/20 C
Interior RH: 30% winter to 
60% summer

Northeast orientation

Air change plays role in drying of beams in existing buildings?
10 ACH = 0.0013 m/s air velocity (1/3 in & 1/3 out) Masonry Wall Interior Insulation Retrofit Embedded Beams 20

Insulated Beam Results

Less ∆T across masonry → 
Less inward vapor drive → 
Lower summertime MCs

Air leakage into now-colder 
beam pocket (would be worse at 
higher wintertime RHs)
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Alternate Masonry Assemblies

Air leakage (source) 
from interior
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Alternate Masonry Assemblies Results
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Conclusions: Thermal simulations (2D)
 Addition of insulation makes ends of embedded wood 

members colder in winter
 Metal plates add heat at beams; risks of condensation 

and air leakage
 Thinned insulation shows little effect on beam end 

temperatures
 Elimination of rim joist insulation results in higher beam 

end temperatures, but with an energy performance 
penalty
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Conclusions: Hygrothermal simulations
 Air leakage has a strong effect on beam end moisture 

contents—likely occurring in reality
 Airflow lowers moisture content in some cases, but can 

raise MC in wintertime (insulated case vs. uninsulated 
with airflow)

 Alternate material assemblies can have strong effect on 
results

 Substantial uncertainty in actual behavior—simulations 
here were a “workaround”

 Use of 2-dimensional hygrothermal simulations?
 Field monitoring of actual behavior (wood MCs)
 New structure inside? Use of “hygric diode” material?
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Future Work (Beam MC Monitoring)
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Beam damage w/o insulation
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Questions?
Kohta Ueno
kohta@buildingscience.com

This presentation will be available at BSC’s website:
http://www.buildingscienceconsulting.com/presentations/recent.aspx
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