Air and Vapor barrier

John Straube www.buildingscience.com

Air Barriers

There must be a continuous, durable, strong and stiff assembly of materials that is defined as the plane of air tightness in all buildings with conditioned space = Air Barrier System

Air Barriers vs Vapor Barriers

- Vapour Barriers Control Vapour Diffusion
 - Why? 1. Moisture wetting and drying
- Air Barriers Control Air Leakage
 - Why? At least six reasons.
 - Health (control contaminants)
 - Moisture (avoid condensation)
 - Heat (for comfort & energy considerations)
 - Smoke & odors
 - Sound

Airflow Within Enclosures

More than just air barriers!

- 1. Convective Loops
- 2. Wind washing
- 3. Pumping

24

Windwashing

- Need some airtightness outside <u>air permeable</u> insulation (fiberglass, cellulose)
- Sealed housewrap, attached building paper
- Sheathing sealed with tape
 - both OSB and insulated sheathing
 - high density MFI?
- Air impermeable cavity insulation
 - Open cell or closed cell foam

Building Science 2008

Airflow Control No. 28/79

Pumping Solutions

- Need to support or adhered membranes
 - Eg Poly and Tyvek

Two air barriers?

- One good one to stop airflow across the enclosure
- One to stop loops from inside or outside
 - Air impermeable foams

Spray foam

- Growing demand for SPF
 - Want more R-values
 - Want better airtightness
 - Deal with complex geometry
- Questions
 - What about vapour control?

Environmental Conditions

- Interior
 - Warm (21 C) and very humid (50%)
- Exterior
 - Cool 4500 DD, design temp -21 C
- Computer modeling allows us to *extrapolate* to other conditions colder, warmer, drier

University of Waterloo BEG

Closed Cell Foam • Still safe with 50%RH inside and north face One of the control of the contr

Open cell foam

- Exterior Conditions: Toronto, North side
- Interior Conditions: vary from 30-60%RH

Field Results

- Polyethylene not needed in most cases
- 2 pcf closed cell foam controls vapor flow even in challenging conditions
 - If RH >50% and colder than 4000 HDD recommend exterior foam or vapor permeable (DensGlas)
 - E.g. Swimming pool in Edmonton
- ½ pcf foam requires vapor control in cold climates
 - in conditions (>40% and 4000 HDD) recommend vapor control paint layer, Smart vapor retarder

University of Waterloo BEG

Vapor Control Layers

- Open Cell Foam
- North-facing, Toronto 21 C/50%RH
- Poly, vapor-control paint, open latex paint

