Dr John Straube **Building Science Corporation**

Building Enclosures

University of Waterloo

Presentation

- · Focus on the building enclosure
- Changes in the industry
 - Now and coming up ..

Building Science 2008

Enclosures No. 2 /

Building Functions

- Human needs... more than shelter (e.g. Location, Shelter, Utility, Comfort & Delight)
- ...function of a building:

"Provide the desired environment for human use and occupancy"

"Durability, Convenience, and Beauty" Vitruvius, 70 BC

Building Science 2008

Enclosures No. 3 /

Building Components

- Buildings are made of several large systems
- The systems that make up a a building can be grouped in four categories
 - Superstructure
 - Enclosure
 - Service Systems
 - Fabric

Building Science 2008

Enclosures No. 4 /

The Enclosure: An Environmental Separator

- The part of the building that physically separates the interior and exterior environments. (Part 5 of OBC)
- Includes all of the parts that make up the wall, window, roof, floor, etc... from the innermost to the outermost layer.
- Sometimes, interior partition also are environmental separators (pools, rinks, etc.)

Building Science 2008

Enclosures No. 5 /

Enclosure Failures

- Problem causes:
 - 1. Material/system does not fill function
 - 2. Functionality not designed for
 - 3. Not built according to design (workmanship)
- Avoidance requires understanding each

Building Science 2008

Enclosures No. 10 /

Five Fundamental Changes

- 1. Increasing Thermal Resistance
- 2. Changing Permeance of Enclosure Linings
- 3. Water/Mold Sensitivity of Materials
- 4. Hygric Buffer Capacity
- 5. 3-D Airflow Networks

Building Science.com

1. Thermal

- Old buildings used energy leakage to dry materials and assemblies
- Increased airtightness
 - Reduces drying, interior RH increases
- Increased insulation = less drying
 - Colder exterior, colder interior
 - Wider swings

Building Science.com

12

2. Permeability

- Low permeance exteriors
 - Metal panels, precast concrete
 - OSB and foam vs skip wood sheathing
- Low permeance interiors
 - Polyethylene, vinyl wall paper
 - Vinyl sheet flooring

Building Science.com

13

3. Water/Mold Sensitivity

- Moisture= mold growth
- Wood products
 - New growth vs old
 - Processing: plywood, OSB, particle board
 - Paper, Veneers
- Finishes
 - Drywall, ceiling tile

4. Hygric Buffer Capacity

- Changing moisture storage
 - Concrete block / terra cotta
 - Rough cut wood / skip sheat
 - Steel stud with exterior gyps
- Orders of magnitude!
- But .. lightweight often low environmental impact

S. Three-D Airflow Networks

Hollow walls, partition
Hollow floors

Sight to problem the dear happen of the partition of the

Five Fundamental Changes

- 1. Increasing Thermal Resistance
- 2. Changing Permeance of Enclosure Linings
- 3. Water/Mold Sensitivity of Materials
- 4. Hygric Buffer Capacity
- 5. 3-D Airflow Networks
- The code cant keep up
- CCMC cant protect, but they could help

Building Science.com

19

Basic Functions of the Enclosure

- 1. Support
 - $\boldsymbol{\mathsf{-}}$ Resist and transfer physical forces from inside and out
- 2. Control
 - Control mass and energy flows
- 3. Finish
 - Interior and exterior surfaces for people
- Distribution a building function

SUPPORT
CONTROL
FINISH

Enclosures No. 20 /

Functional Layers

Building Science 2008

Distribution

- A Building Function imposed on enclosure
- Distribute services or utilities to from through, within, the enclosure, e.g.,
 - Power
 - Communication
 - Water (Potable, sewage, etc.)
 - Gas
 - Conditioned air
 - Cold or hot water

Building Science 2008

Enclosures No. 29 /

History of Control Functions

- Older Buildings
 - One layer does everything
- Newer Building
 - Separate layers,
 - ... separate functions

Building Science 200

Enclosure Design Principles 1

- Design a complete structural load transfer path
 - Structure, windows, ties, etc
 - All loads go to ground
- · Respect the site and climate
 - Rain, sun, wind, hill, valley, high rise or low-rise
- Continuous rain control plane
 - Control with surface features and detailing
 - Drained, storage, or perfect barrier strategy
- Continuous plane of air barrier tightness
 - Fastidious attention to detail 3-D

Building Science 2008

Enclosures No. 31 /

Enclosure Design Principles 2

- Provide a continuous plane of insulation
 - Ideally separate structure from enclosure
 - Avoid thermal bridges
- Provide a moisture tolerant design
 - Balance wetting, drying, and storage (matl's, climate)
 - Use appropriate levels of vapour control
 - No cold vapor barriers, allow drying
- Accommodate movements and tolerances
- · Draw all of the Details!

Building Science 2008

Enclosures No. 32 /

Design Checklist & Functions

Building Enclosure Concept Design Stage Checklist

SUPPORT

1. Support mechanical loads

Sufficient strength and stiffness (from structural engineer)

2. Heat Flow Control (Temperature and Energy)

- avoid thermal bridges, reasonable insulation: HVAC energy + capital cost savings
- control air leakage,
- excessive glazing = winter discomfort and summer overheating (esp. west glass)

3. Condensation Control

- surface condensation, i.e. thermal bridges, corners, etc. interstitial condensation (summer & winter) by vapour
- diffusion and air leakage

- air barrier systems, compartmentalization, convection loops
- IAQ, control of stack effect, HVAC, and wind-induced air

5. Rain Control

- climate, site, building orientation, shape
- deflection, surface drainage, drying, and enclosure rain

6. Crack/Movement control

- control of cracking and movement are complementary
- consider creep, sag, shrinkage, swelling, both moisture and temperature movement

7. Fire and Smoke Control

- fire resistance rating, flame spread, smoke produced, toxins generated
- special situations, often involved in design decisions (e.g., combustible vs non-combustible)

8. Sound and Vibration Control

- airborne sound reflection, transmission, and impact borne sound transmission
- special situations are sometimes important, always needs some consideration

FINISH

colour, pattern, texture, etc of interior and exterior interfaces

architecture and interior designers

Building Science 2008

Enclosures No. 33 /

Design Checklist & Functions

Building Enclosure Concept Design Stage Checklist

SUPPORT

1. Support mechanical loads

Sufficient strength and stiffness (from structural engineer)

- avoid thermal bridges, reasonable insulation: HVAC energy + capital cost savings
- control air leakage,
- excessive glazing = winter discomfort and summer overheating (esp. west glass)

3. Condensation Control

- surface condensation, i.e. thermal bridges, corners, etc. interstitial condensation (summer & winter) by vapour diffusion and air leakage
- air barrier systems, compartmentalization, convection loops

Continuous Air Barrier

Continuous Insulation

IAQ, control of stack effect, HVAC, and wind-induced air

5. Rain Control

- climate, site, building orientation, shape
- deflection, surface drainage, drying, and enclosure rain control strategies

- control of cracking and movement are complementary
- consider creep, sag, shrinkage, swelling, both moisture and temperature movement

7. Fire and Smoke Control

- fire resistance rating, flame spread, smoke produced, toxins generated
- special situations, often involved in design decisions (e.g., combustible vs non-combustible)

8. Sound and Vibration Control

- airborne sound reflection, transmission, and impact borne sound transmission
- special situations are sometimes important, always needs some consideration

- colour, pattern, texture, etc of interior and exterior interfaces
- architecture and interior designers

Continuous Rain Control Layers

Building Science 2008

Enclosures No. 34 /

Enclosure Design: Details

- Details demand the same approach as the enclosure.
- Scaled drawings required at

Drained cavity

Exterior rigid insulation — extruded polystyrene, expanded polystyrene, isocyanurate, rock wool, fiberglass

Membrane or trowel-on or spray applied drainage plane, air barrier and vapor retarder

Non paper-faced exterior gypsum sheathing, plywood or oriented strand board (OSB)

Insulated wood stud cavity

Gypsum board

Latex paint or vapor semi-permeable textured wall finish

The Wood Frame High R-value wall

Building Science 2008

Enclosures No. 44 /

Brick veneer/stone veneer

Issues

- Rain Control constant effort
 - Leaks, rot, stain, peeling paint
- Air Control new products
 - Rot and mold, Comfort, noise, health
- Vapor Control new walls, new challenges
 - Condensation, rot and mold
- Heat Flow Control new products
 - cold spots, comfort

Building Science 2008

closures No. 45 /

High R-value Walls

Case Studies

Building Science 2008

Enclosures No. 49 /

16